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PAPER
Uncertainty Mitigation for Trustworthiness-Oriented Applications
in Wireless Ad Hoc Networks

Feng LI†, Jie WU††, and Avinash SRINIVASAN†††,

SUMMARY Link and node trustworthiness are important metrics in
wireless ad hoc networks. Many existing wireless ad hoc network routing
algorithms assume the availability of precise trustworthiness information.
This, however, is an unrealistic assumption given the dynamics of wire-
less ad hoc networks. Therefore, a realistic method is needed to evaluate
trustworthiness by mitigating uncertainty in the estimation process. In this
paper, we propose a novel trustworthiness estimation model that accounts
for uncertainty as well as two uncertainty mitigation schemes. We then
illustrate the effectiveness of our schemes using a utility-oriented routing
algorithm as a sample application. An extensive simulation study shows
that these two uncertainty mitigation schemes significantly increase path
stability and the long-term total benefit of the wireless ad hoc network.
key words: Trustworthiness, risk, uncertainty, wireless ad hoc networks.

1. Introduction

Wireless ad hoc networks operate in an infrastructureless
wireless medium that is subject to message loss. This mes-
sage loss is usually represented by a single metric called
link trustworthiness. Various routing optimization problems
have been formulated previously based on link trustworthi-
ness, with little or no information on how to obtain credible
trustworthiness values. Usually, the trustworthiness value is
captured through monitoring where the behavior of a node
(and the corresponding links) is monitored and recorded by
its neighbors. These monitoring mechanisms typically use
a simplistic trustworthiness estimation model for each link
(i, j): it is the fraction of link (i, j)’s successful forwardings.

The trustworthiness estimated in this manner has an
uncertainty component introduced either by an inadequate
number of observations or by subtle changes in node be-
havior. Systematic ways of characterizing uncertainty in
wireless ad hoc environments is still an unexplored terri-
tory. In this paper, we explicitly define the uncertainty
metric to measure the possible variations and inaccuracies
in the quantified trustworthiness metric, and propose two
novel schemes for mitigating uncertainty: the unified metric
scheme and the dynamic threshold scheme.

In the unified metric method, we use a metric called
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risk factor to reflect the negative consequences associated
with uncertainty in the estimated trustworthiness. The uni-
fied metric is then computed as the weighted sum of the
original optimization metric and the risk factor. Note that
the optimization metric is application dependent. The uni-
fied metric is then used as the new optimization metric.

The dynamic threshold method operates in two phases.
In the first phase, each node calculates a threshold for uncer-
tainty, which is based on its characteristics, associated cost,
and expected return. A candidate set of nodes are chosen
based on their uncertainty level. In the second phase, the
best path is selected by applying the original optimization
algorithm on the candidate node set. Here, we strictly re-
strict our discussions to the routing process. However, the
proposed schemes can be used for mitigating uncertainty of
any optimization process in wireless ad hoc networks.

A utility-oriented routing model is used as a sample ap-
plication to show the validity of our trustworthiness estima-
tion model using the aforementioned uncertainty mitigation
schemes. This model views the wireless ad hoc network as
a real-world marketplace in which the system gains benefit
for a completed message delivery service. Different values
of benefit reflect different qualities or priority requirements
of the routing requests. Each intermediate node has to in-
cur a cost to relay a packet (e.g. cost in terms of energy).
If the packet is lost during transmission, then there is no
benefit. In this sample application model, utility, defined
as the expected benefit of a path, is the original routing met-
ric. In computing utility, trustworthiness plays a critical role.
Therefore, our trustworthiness evaluation model, along with
the uncertainty mitigation schemes, can aid users in making
informed decisions.

In summary, our contributions are as follows: 1) We
propose a distributed mechanism to identify underlying un-
certainty in trustworthiness estimation. 2) We devise two
novel schemes for uncertainty mitigation in wireless ad hoc
networks, and present formal algorithms for both schemes.
3) We integrate uncertainty mitigation into a routing appli-
cation for proof of concept. 4) We evaluate the schemes’
applicability through extensive simulation and analysis.

2. Trustworthiness Estimation Model

Highly dynamic environment and self-organizing nature are
two important characteristics of wireless ad hoc networks
that make the precise evaluation of trustworthiness very
critical for routing, QoS management, and intrusion detec-
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Fig. 1 Neighbor monitoring mechanism.

tion. However, these two characteristics make the process of
gathering trustworthiness information extremely challeng-
ing.

Neighbor monitoring is a unique mechanism that helps
to evaluate trustworthiness. Exploiting the promiscuous na-
ture of broadcast communication in wireless media, nodes
are able to track the outgoing packets of their one-hop neigh-
bors through passive observation. When a node i sends a
message through its neighbor j, the forwarding behavior of
j can be monitored by node i. Similarly, j’s behavior can
also be monitored by any other node k that is a common
neighbor of both i and j.

Bayesian inference is a statistical inference in which
evidence or observations are used to update or to newly infer
the probability that a hypothesis may be true. Beta distribu-
tion, Beta(α, β), is used here in the Bayesian inference, since
it only needs two parameters that are continuously updated
as observations are made. To start with, each node in the
network has the prior Beta(1, 1) for all its neighbors. The
prior Beta(1, 1) implies that the distribution of the trustwor-
thiness metric p complies with the uniform distribution on
[0, 1], which indicates complete uncertainty as there are no
observations. If node i forwards a packet to the destination
through j, i will classify the observation result as a success
when i overhears j forward that packet. In this case, i in-
crements α j

i = α
j
i + 1. Here, α j

i is node i’s recorded metric
α towards node j (Similar notations are used for other met-
rics). Otherwise, i will consider it to be a failure and incre-
ment β j

i = β
j
i +1. Each node can then estimate its neighbor’s

trustworthiness based on its accumulated observations using
the Bayesian inference [3].

In this system, we use a triplet to represent the node’s
opinion towards trustworthiness: (b, d, u) ∈ [0, 1]3 and
b + d + u = 1, where b, d, and u designate belief, disbe-
lief, and uncertainty respectively in the statement that the
transmission between two nodes is reliable. It should be
noted that the entire opinion space is divided into two re-
gions: certainty (1 − u) and uncertainty u. Now the opinion
triplet (b, d, u) is derived from Beta(α, β).

There are two important attributes of uncertainty. First,
when (α+β) is higher, it implies that there is more evidence,
which consequently lowers uncertainty u. Second, when the
evidence for success or failure dominates, there will be less
uncertainty when compared to the situation in which there is
equal evidence for both success and failure. This is because,

for any given (α + β), uncertainty u will be at its peak when
α = β. Therefore, we define uncertainty u as the normalized
variance of Beta(α, β) as follows:

u =
12 · α · β

(α + β)2 · (α + β + 1)
(1)

The numerator and denominator in Equation 1 guaran-
tee the latter and the former attributes respectively. This is
also illustrated in Fig. 2. The variance is multiplied by a
constant 12, which makes u = 1 when α = β = 1. Equa-
tion 1 illustrates one of the possible definitions of uncer-
tainty that complies with the summarized two properties.

The total certainty, which is (1−u), can be divided into
b and d according to their proportion of supporting evidence.
Since the proportion of supporting evidence for the state-
ment that the transmission between two nodes is reliable is
α

(α+β) , b and d can be calculated as follows: b = α
(α+β) · (1−u)

and d = (1 − u) − b = β
(α+β) · (1 − u).

In the Bayesian procedure, the probability that the next
packet will be successfully forwarded by the corresponding
neighbor is given as: p = b

1−u =
α
α+β

.

Assume in Fig. 1(b), node i records ((α j
i , β

j
i ) = (4, 2))

and node i′ records ((α j
i′ , β

j
i′ ) = (8, 4)) towards node j. The

estimated trustworthiness will be the same, which is p j
i =

p j
i′ = 0.66. However, i’s uncertainty toward j: u j

i = 0.38
is much higher than i′’s uncertainty towards j: u j

i′ = 0.20
according to Equation 1. Fig. 2 showcases the behavior of
uncertainty when (α, β) ∈ [1, 10]2.

3. Uncertainty Mitigation Schemes

According to the design of our trustworthiness estimation
model, the uncertainty metric is defined as the information
ordering between no knowledge and total certainty, to re-
flect the degree of confidence in the estimated trustworthi-
ness. Uncertainty is obviously unfavorable when we want
to use the estimated trustworthiness. The uncertainty metric
itself is inapplicable when we make decisions based on the
original optimization metric. Therefore, risk is introduced
to account for the possible fluctuation in the original opti-
mization metric caused by the existence of uncertainty in the
estimation. This serves as a bridge to integrate uncertainty
into the optimization process.

There are numerous ways to mitigate uncertainty. We
propose two different schemes and discuss their design in
detail in the remaining part of this section.

3.1 Dynamic Threshold Scheme

The dynamic threshold scheme is the more conservative of
two schemes that we propose. To begin with, a node re-
ceives a request to participate in routing. The node then
considers all possible next hop nodes and computes its un-
certainty towards them using the accumulated observations.
Then, threshold T is calculated to reflect its acceptable un-
certainty level. Nodes with uncertainty above the threshold
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Fig. 2 Uncertainty illustration.

T are filtered out. From the remaining qualified nodes, the
best node is chosen after running the original routing algo-
rithm.

T should be dynamically determined based on the ex-
pected cost and return. This is necessary in order to accom-
modate the varying criticality of transactions. The cost and
the return are computed by node i after receiving the request.
The expected gain is represented as G ∈ [0,∞]. Let C̃ rep-
resent normalized cost, and C̃ equals the ratio of the cost
a node is required to invest in a given transaction and the
maximum amount of cost that a node can invest in a single
transaction. In this scheme, T can be defined as Equation 2:

T = 1 − C̃
G
λ (2)

Here, λ is the characteristic factor that reflects a node’s
attitude towards risk: conservative (a large number) or ag-
gressive (a small number). A higher λ will lead to a lower
T which makes the filtering more conservative. Intuitively,
when the cost of a particular transaction is high, a node
may not be willing to accept higher uncertainty. On the
contrary, when the associated returns are high, T will be
pushed higher, and consequently, nodes accept more uncer-
tainty. According to Equation 2, a larger C̃ will lead to a
lower T . On the other hand, a larger G will lead to a higher
T since C̃ ∈ [0, 1].

In our model, T is dynamic. Note that a static imple-
mentation of T is much easier. However, it is inflexible and
contradictory to the general experiences of the uncertainty
mitigation decision process.

In Fig. 1(b), assume node i records ((α j
i , β

j
i ) = (1, 7))

towards node j and T = 0.10. From Equation 1, u j
i = 0.13.

Now, since u j
i > T , node i will discard node j’s request.

3.2 Unified Metric Scheme

The unified metric scheme views uncertainty from a com-
pletely different perspective. It is more aggressive com-
pared to the dynamic threshold scheme. Similar to the above
scheme, the process begins with a request. After receiving
the request, the node will compute its risk factor R that re-
flects the possible fluctuations in the outcome of a transac-
tion. The uncertainty captured by the reputation system is

used in the computation of R as follows:

R = u ·G2 (3)

Here again, G ∈ [0,∞] is the expected gain. The mo-
tivation behind Equation 3 is as follows: with the same G,
higher uncertainty leads to higher risk; and with the same
uncertainty, higher G, which implies that successful packet
relay in this hop is critical, leads to higher risk. The unified
metric M̃ itself is computed as the weighted sum of the risk
factor R and the original routing metric M. Once the M̃ is
computed, it is used as the original routing metric in the path
selection process. M̃ is calculated as follows:

M̃ = M − λ · R (4)

where λ is the node’s characteristic factor in the given sce-
nario and M is the original routing metric. However, since
risk is always unfavorable, it is considered to be a penalty
and subtracted from the original metric when computing M̃.

Consider Fig. 1(b), Mi = Mi′ = 50, Ri = 20, Ri′ = 30,
and λi = λi′ = 0.8. Now, according to Equation 4, M̃i = 34
and M̃i′ = 26. Consequently, node i will be chosen dur-
ing path selection since maximum M̃ is the routing criteria
here. With the original routing metric, either A or B could
be chosen. But, with our unified metric scheme, we enable
the path selection process to choose the path with implicit
uncertainty mitigation.

4. An Application: Utility-Oriented Routing

In utility-oriented routing [18], each routing is considered
to be a transaction. Utility, defined as the expected benefit
of the transaction, is chosen as the primary routing metric.
This model sets up an ideal platform to demonstrate the ef-
fectiveness of our trustworthiness estimation model and the
uncertainty mitigation schemes. This is because, in utility-
oriented routing, the primary routing metric is derived from
trustworthiness. In [18], trustworthiness is assumed to be
static and obtainable. We consider this to be a strong and
unrealistic assumption. In our methodology, we relax this
assumption and use a realistic trustworthiness estimation
model that takes into account the underlying uncertainty. In
[18], there are two parameters that influence path selection:
topology and packet value. However, using our trustworthi-
ness estimation model, two additional parameters influence
path selection: uncertainty u and nodes’ attitude λ.

4.1 Utility-oriented Routing: Model Overview

We consider a source s that intends to send a packet to a
destination k. s will get a benefit v if the packet is success-
fully delivered to d. The network is modeled as a unit disk
graph. For each link (i, j) in the graph, there are two as-
sociated properties: cost and trustworthiness. Cost c j

i is the
minimal energy level required to connect i and j, while trust-
worthiness p j

i is the ratio of packets forwarded by j and the
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packets sent by i. For illustration, we first consider a single-
link route from s to k with trustworthiness pk

s and cost ck
s.

Since k receives a packet with probability pk
s, s has the same

probability of getting the benefit v at the cost ck
s. Note that

s gets v if and only if the packet is delivered to k. From an
economic perspective, the expected utility of this route is the
difference between the expected benefit and the route’s cost:

U = v · pk
s − ck

s (5)

Consider the multi-hop route < s = 1, · · · , k − 1, k >.
Here, the utility is calculated as follows:

U = v ·
k−1∏
j=1

p j+1
j −

k−1∑
i=1

ci+1
i

i−1∏
j=1

p j+1
j (6)

However, an important observation in a multi-hop route
is that the source s realizes the benefit v if and only if the
transmission is successful on each link (i, j) between s and
k. Thus, from the destination’s point of view, any intermedi-
ate node can be considered the virtual source and the corre-
sponding utility can be calculated from that virtual source to
the destination. On the other hand, from the source’s point
of view, any intermediate node can be considered the virtual
destination. Then the source’s benefit will be equal to the
intermediate node’s utility. This method can be extended to
multi-hop routes by recursively applying Equation 5 starting
from destination k.

4.2 Application of the Trustworthiness Estimation Model

A neighbor monitoring mechanism is employed to gather
information for estimating trustworthiness. While sending
packets to its next-hop neighbor j, a node i will also try to
over-hear and count the number of packets that j further for-
wards. If j forwards a packet sent by i, then i will consider
this a successful forwarding and increment α j

i . Otherwise, i
increments β j

i . When i needs to evaluate its utility and un-
certainty for routing purposes, it will calculate (b, d, u) from
the recorded α j

i and β j
i using the Beta function. Once the

triplet is computed, the estimated trustworthiness is com-
puted based on the triplet. To keep the integrity of this
method, the destination node should send an acknowledge-
ment to its one-hop neighbors when it receives a packet.

4.3 Application of the Unified Metric Scheme

The unified metric scheme is an iterative approach in which
each node will combine the calculated risk with utility to ob-
tain the M̃ based on λ. M̃ is then broadcast in the neighbor-
hood. This process continues until a path has been success-
fully selected with M̃ as the primary routing metric. Here,
M̃ is computed using Equation 4 where M is replaced by
utility U which is the primary routing metric.

Now consider the utility-oriented routing model with
nodes i and j, and assume j invites i. Here, without uncer-
tainty, i’s expected gain G would be j’s broadcast utility U j.

Analyzer

α , β

b , d

cost

(investment)

original metric

u

λ , risk avoidance scheme

decision

Reliability Reputation
Formation

Neighbor
Monitoring

Risk Avoidance
Policy

Original Optimization
Goal Calculation

Fig. 3 The flow of decision.

Algorithm 1 Unified Metric
1: Initialize the selected node set← ∅;
2: while s < the selected node set do
3: Find node i with the largest M̃i in the unselected node set;
4: Add i to the selected node set;
5: Delete i from the unselected node set;
6: For each neighbor j of i that hasn’t been selected, Relax(i, j);
7: end while

Relax(i, j)
1: Calculate node j’s utility based on i’s: U i

j = Ui · pi
j − ci

j;
2: Calculate node j’s risk factor in choosing node i as the next-hop node:

Ri
j = ui

j · (M̃i)2;
3: Calculate M̃ j in choosing node i: M̃i

j = U i
j − λ · Ri

j;
4: Update U j and M̃ j if M̃ j < M̃i

j;

This, however, changes in our estimation model, which ac-
counts for uncertainty. Here, i’s expected gain will be j’s
broadcast unified metric M̃ j. Therefore, in Equation 3 we
should define G = M̃ j before computing R. Algorithm 1
shows the steps involved in our unified metric uncertainty
mitigation scheme.

Although Algorithm 1 is centralized, a distributed im-
plementation can be realized by using a back-off timer on
each node. M̃ could be treated as the summary of topology
information along with the underlying uncertainty. Each
node locally determines its next-hop node based on the
above summarized information. The distributed implemen-
tation can be gracefully integrated into a reactive routing
protocol, such as AODV [20] or DSR [10].

The value of the back-off timer on each node i is set to
(v − M̃i). This value reflects the value of M̃. If there is no
transmission delay, the node with maximum M̃ will always
broadcast the route reply first. However, due to transmission
delays, this implementation can only be an approximation.

4.4 Application of the Dynamic Threshold Scheme

When using the dynamic threshold scheme, each node will
filter requests by the dynamic uncertainty threshold and cal-
culate the remaining utility. The utility U is then broad-
cast in the neighborhood. Nodes in the network should have
a maximum possible transmission range. Therefore, each
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Algorithm 2 Dynamic Threshold

1: Initialize;
2: while s is not selected do
3: Find node j with the largest U j in the nodes with status unselected;
4: Mark j as selected;
5: For j’s each neighbor i with status unselected, Relax( j, i);
6: end while

Relax( j, i)

1: Calculate utility: (Ui)′ = U j · p j
i − c j

i ;

2: Find the uncertainty threshold: T = 1 − C̃
G
λ ;

3: if (Ui)′ ≥ Ri and u j
i ≤ T then

4: Update Ui ← (Ui)′;
5: end if;

node can calculate the amount of energy cmax associated
with the maximum possible communication range. There-
fore, the normalized cost C̃ is: C̃ = c j

i /cmax. Expected gain
G is the other important metric, which is the expected utility
Ui in this model. T can be calculated using Equation 2.

Algorithm 2 exploits an idea similar to Dijkstra’s short-
est path algorithm [6] while using utility as the routing met-
ric and applies the uncertainty mitigation scheme. All nodes
except the destination will have the zero initial utility and
the unselected status at the beginning. The algorithm works
backwards from the destination. A node will be marked as
selected when it has the largest utility among all the unse-
lected nodes and relax its neighbors. Node i, when relaxed
by node j, calculates (Ui)′ and compares with the original
Ui. If (Ui)′ > Ui, then i calculates T according to Formula 2
and compares it with u j

i . It then follows the rules below:
1) If u j

i > T , reject. u is higher than acceptable.
2) If u j

i ≤ T , accept. Ui ← (Ui)′.
A distributed implementation of Algorithm 2 can be

realized in a similar manner as suggested for Algorithm 1
with two minor modifications. First, when being relaxed by
a neighbor, the node will compute T and decide whether it
should reject the request. Second, the value of the timer for
a node i is (v − Ui), which reflects j’s current utility since
utility is the primary routing metric.

4.5 Example

An example can be given as shown in Fig. 4, where the
packet value v = 100. If node s sends 10 packets to node
i and observes that i successfully forwards only 9 of them,
then s records (9, 1) for (αi

s, β
i
s) with ci

s = 10. Similarly,
other nodes record their observations in the tuple (α, β) as
shown in Fig. 4.

In the unified metric scheme, nodes will be relaxed
starting from the destination. Assume λ = 0.1 is uniform
throughout the network. Now let us consider the scenario in
which all the nodes excluding s have completed their com-
putation. Assume s has received a relaxation request from i,
k, and j. s will compute Us and M̃s using U and M̃ from i,
k, and j respectively. s will then choose the node that yields
the largest M̃s as its next-hop node. For instance, using Ui

j

i

10

10

10

10

(8,2)

(7,3)

40

(4,6)

(8,2)

(9,1)

(6,4) 20

(5,5)
10

s k

i’

Fig. 4 An example illustrating utility-oriented routing with the uncer-
tainty mitigation schemes.

and M̃i, s computes U i
s = 21.09 and M̃i

s = 20.02 with a risk
factor of 10.74. Similarly, U j

s = 25.00 and M̃ j
s = 18.32 with

a risk factor of 66.81. Therefore, s will not accept j’s re-
laxation request since the associated risk factor is very high.
So, with the unified metric scheme, the path s − i − i′ − k
is finally selected. Similar results can be observed using the
dynamic threshold scheme.

For further discussion, assume node s records one more
failure from its neighbors i and j. Now we have (α j

s, β
j
s) =

(5, 6) and (αi
s, β

i
s) = (9, 2). If we consider only utility and

choose j as s’s next-hop, then the new U j
s = 15.74 which

drops very quickly from the previous scenario. However,
when using the unified metric scheme we choose i, and new
U i

s = 20.01, which remains stable with very little variation.

5. Analysis

The mitigation schemes provide more information about the
possible fluctuation caused by the uncertainty in trustworthi-
ness estimation. To simplify the discussion, these attributes
are presented under the utility-oriented routing application.

Attribute 1: (Selection Stability): Both schemes increase
path selection stability.

Proof: The trustworthiness is estimated from the results
of neighbor monitoring. As the evidence accumulates, the
value of the estimated trustworthiness stabilizes. If the
variation is large enough, another route will become the
best path under the given routing criterion, thereby causing
changes in the selected path.

Consider a simple situation: two nodes i and j have
a common neighbor k which is the destination. Assume at
first Ui ≥ U j, because of which the path containing node i is
selected. After some time, node i will accumulate more evi-
dence towards the trustworthiness pk

i =
αk

i

αk
i +β

k
i
. Assume with

all parameters remaining the same, the new (pk
i )′ decreases

to a point that makes (Ui)′ < U j. Without uncertainty mit-
igation schemes, the selected path should be changed be-
cause ∆Ui is large enough. Assume ((αk

i )′, (βk
i )′) are the new

results causing the change. The ∆Ui will be:

∆Ui = (
αk

i

αk
i + β

k
i

−
(αk

i )′

(αk
i )′ + (βk

i )′
) · UT (7)
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Using the unified metric scheme, the path selection de-
cision at the beginning will be based on M̃i and M̃ j. If
M̃i ≥ M̃ j at the beginning, node i will be selected. After
we get ((αi)′, (βi)′) from the observation, ∆M̃i will be:

∆M̃i = ∆Ui − λ · ∆Ri (8)

where ∆Ri = (ui − (ui)′) · M̃d. The uncertainty will always
decrease as evidence accumulates. So ∆Ri ≥ 0, ∆M̃i ≤ ∆Ui.
Hence, the probability that the selected path changes to in-
clude node j also decreases.

The dynamic threshold approach increases path stabil-
ity from a completely different perspective. It defines the
dynamic threshold of uncertainty as:

T = 1 − (
ci

j

cmax
)

U j
λ·ci

j (9)

This threshold will block out nodes that are sensitive to
change in trustworthiness before they are selected because
of high utility. Using the above setup, if node i is more sen-
sitive to trustworthiness changes and its uncertainty towards
k is large enough in the beginning, it will be blocked out and
the change in the selected path will not occur. �

Path selection stability is a measure of the frequency
of change in the selected path. The underlying reason for
this change is the accumulating observations and the corre-
sponding change in the estimated trustworthiness metric.

Attribute 2: (Eventual Optimality): After accumulating
enough observations, the utility-oriented routing mechanism
using either of the proposed uncertainty mitigation schemes
will achieve path selection optimality.

Proof: The observations are represented as (α, β). After a
sufficiently long time, the total number of observations in-
creases to a large number, say α + β → ∞. Then the uncer-
tainty metric u j

i → 0. In the unified metric scheme, the risk
factor R → 0, and M̃i = Ui. The path selection scheme
based on unified metric M̃ or utility Ui will produce the
same result. For the dynamic threshold scheme, u j

i < T
is always true because T > 0. No node will be filtered out.
Therefore, Algorithm 1 and 2’s eventual optimality is equal
to the optimality of the algorithm that selects a path with
maximum utility. The proof of the maximum utility algo-
rithm’s optimality can be seen in our previous work [18].
So both mitigation schemes eventually achieve optimality.�

Attribute 3: (Character Reflection): Both uncertainty
mitigation schemes can reflect a node’s risk-evading or risk-
seeking attitude.

Proof: Nodes’ attitudes towards risk are reflected by char-
acteristic factor λ in both the proposed schemes. To validate
our claim, we assume all other parameters are the same, with
node i as the subject, and show how λ influences the result.

In the unified metric scheme, M̃i = Ui − λ · Ri where
λ is the weight of the risk factor. λ is indicative of a node’s
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Fig. 5 Performance comparison.

risk-seeking behavior as the weight of the risk factor will be
scriptsize, while a larger λ indicates otherwise.

In the dynamic threshold scheme, the threshold T re-
flects nodes’ attitude. According to Equation 2, a larger λ
leads to a larger T which indicates that the node accepts
larger uncertainty, as less requests will be filtered out and
more neighbors will qualify with acceptable uncertainty. �

6. Simulation Evaluation

In this section, we evaluate the performance of the proposed
uncertainty mitigation schemes through simulations. With-
out loss of generality, cost is modeled as the energy con-
sumption. We compare the utility-oriented routing method
with/without uncertainty mitigation schemes.

The optimal method is the original MaxUtility algo-
rithm using the actual trustworthiness. Since this informa-
tion can not be directly recorded in a real wireless ad hoc
network, this optimal method is not applicable in real life
settings and it is used as a benchmark to evaluate the per-
formance of our algorithms. The MaxUtility method is the
original MaxUtility algorithm using the estimated trustwor-
thiness, but it does not consider the uncertainty metric.

6.1 Simulation Environment

We develop a stand-alone, discrete event simulator to evalu-
ate our schemes. This simulator only implements the net-
work layers and it makes simple assumptions regarding
lower layers. We set up the simulation in a 900m × 900m
area. In our experiments, the energy cost between any two
nodes is proportional to their distance.The actual stability
of each link is randomly generated (uniform distribution) in
the range [0, 1]. For each set of specified parameters, we run
each algorithm 100 times and use the average value of the
results to evaluate the performance.

In our simulation, the packet value v = 5, 000. λ is uni-
form for the entire network to reflect the network’s risk atti-
tude with a default value of 0.5. The system scale parameter
a = 0.001 for both the schemes. Each node accumulates
l observations before route discovery where l is a random
number in [0, 15].

After all nodes in the network complete accumulating
l observations of their neighbors, the route discovery phase
begins. Each algorithm selects the best path and 500 packets
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Fig. 6 The effect of different parameters.

are transmitted over each selected path for which the total
cost, delivery ratio, and packet value are recorded. The av-
erage utility is then calculated based on these metrics. In our
simulations, there are two tunable parameters: the number
of nodes n and the total number of observations l = α + β.

6.2 Simulation Results

We adjust the number of nodes in the network to compare
the performance of utility-oriented routing with and with-
out uncertainty mitigation schemes. The number of nodes
decides the node density, which in turn determines the com-
munication cost and node degree.

In Fig. 5 (a), the delivery ratio of the optimal method
is much higher than the other three methods that use esti-
mated trustworthiness based on neighbor monitoring. The
estimated trustworthiness metric is inaccurate and contains
uncertainty. Hence, there is a difference between the opti-
mal path and the selected path for these three algorithms.
The unified metric scheme and dynamic threshold scheme
exploit the uncertainty information implied in the monitor-
ing results while MaxUtility algorithm only considers the
direct estimated trustworthiness metric.

Because our schemes avoid nodes with high uncer-
tainty, they achieve a better delivery ratio compared to
MaxUtility. Another point that is worth noticing in Fig. 5 (a)
is that as the number of nodes in the network increases, the
differences in the delivery ratio between the optimal method
and other three methods becomes larger. When node density
is higher, there are more possible paths to choose from. With
inaccurate trustworthiness information, it would be harder
to find a path that achieves a higher packet delivery ratio.
Fig. 5 (b) shows the average utility. It is clear that our miti-
gation schemes outperform the MaxUtility algorithm, which
omits the uncertainty in trustworthiness evaluation.

Fig. 6 (a) illustrates the change in average utility when
observations accumulate. When more observations are ac-
cumulated, the estimation of the trustworthiness metric be-
comes more accurate and tends to stabilize. The uncer-
tainty in estimation is reduced. Therefore, the differences
between the optimal method and the two uncertainty miti-
gation schemes decrease when the number of observations
before route discovery increases.

Fig. 6 (b) compares the two uncertainty mitigation
schemes with different characteristic factors λ. The results
indicate that using the same uncertainty mitigation scheme,
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Fig. 7 Path stability with different (a) n, (b) λ.

whether λ = 1.0 or λ = 0.1 leads to better average utility is
totally random. It complies with our experience. Although
considering risk helps us to make more informed decisions,
the answer to ‘whether the risk seeking or evading attitude
is better’ depends on the specific application domain.

Fig. 7 (a) shows another advantage of our uncertainty
mitigation schemes. In this simulation, we run the algo-
rithms with the number of observations l in [0, 15], [30, 45]
and [60, 75]. Using the uncertainty mitigation scheme, a
great improvement in path stability can be seen as uncer-
tainty is considered beforehand.

Although the nodes’ risk attitude cannot improve the
average utility, it has a strong impact on path stability. From
Fig. 7 (b) we can see that the path stability increases as λ
increases. When nodes are risk-evading, the paths seem to
be more stable.

7. Related Work

Trustworthiness is an important metric in wireless ad hoc
networks [8][16]. Many routing algorithms [5][7][18] con-
sider this metric and compute their routing metrics on the
basis of quantified trustworthiness. The method of collect-
ing trustworthiness information in a distributed manner and
evaluating the inaccuracies and uncertainty in the collected
value remains undiscussed. It allows nodes to form trust
opinions towards trustworthiness according to its own obser-
vations, and uses a metric to measure the uncertainty. This
uncertainty-centric reputation system is unique [15], as only
a few of the existing reputation systems [1][2][3][22] explic-
itly consider the uncertainty metric [11][17].

In this paper, to evaluate the possible fluctuation in the
routing metric caused by existing uncertainty, risk is intro-
duced. The methods to identify and quantify risk are widely
studied in many trust-management systems [9][12]. The SE-
CURE project [4] analyzes a notion of trust that is inherently
linked to risk. Risk is evaluated on every possible outcome
of a particular action and is represented by the outcome’s
intrinsic cost. [19] and [13] combine risk and trust. In [19],
the authors explicitly avoid expressing measures of trust di-
rectly. Instead, they develop a model around other elements
such as transaction values and the transaction history. Trust-
worthiness trust and decision trust are distinguished in [13].

We use utility-oriented routing as a sample applica-
tion in this paper. Other works also use utility as the op-
timization objective. A price-based scheme is presented in
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[14] to effectively allocate resources among multiple multi-
hop flows. This approach maximizes the aggregated utility
of flows, while maintaining basic fairness among multiple
flows. In [21], a market-based approach is proposed to effi-
ciently allocate bandwidth.

8. Conclusion and Future Work

Evaluating and quantifying trustworthiness is of critical im-
portance in wireless ad hoc networks. Existing optimization
algorithms in wireless ad hoc networks assume the availabil-
ity of precise trustworthiness information, which is unreal-
istic due to the dynamics of ad hoc networks. In this paper
we have presented a novel trustworthiness estimation model
that accounts for uncertainty, and two uncertainty mitiga-
tion schemes. Through simulations, we have evaluated the
performance of our schemes on an existing utility-oriented
routing protocol in evaluating trustworthiness under differ-
ent levels of uncertainty. However, since uncertainty may
change constantly as new observations are made, the path
re-selection cost in our schemes can be high. In our future
research, we will investigate opportunistic routing methods
to reduce the path re-selection cost of our schemes to make
them more robust.
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